diva-notes
  • README
  • Ads
    • 定价策略
    • 广告层级
    • 归因模型
    • 买量
    • Chat GPT
    • Google
  • AI
    • 参考资料
    • Chat GPT
    • stable-diffusion-webui安装
  • Algorithm
    • 倍增
    • 并查集
    • 参考
    • 环的判断
    • 凸包
    • 蓄水池抽样
    • 最短路径
    • 最小生成树
    • KMP算法
    • Rabin-Karp算法
    • Tarjan桥算法
  • Architecture
    • Serverless
  • Career
  • CICD
    • 代码质量
    • CICD实践
  • Data Structure
    • 布谷鸟过滤器
    • 布隆过滤器
    • 浮点
    • 红黑树
    • 锁
    • LSM树
  • DB
    • My SQL
      • 隔离级别
      • 架构
      • 索引
      • 锁
      • 页结构
      • 主从同步
      • ACID
      • Log
      • MVCC
      • Questions
    • Postgres
      • 持久化
      • 对比MySQL
      • 隔离级别
      • 索引
      • Greenpulm
      • MVCC
    • 倒排索引
    • 列式存储
    • H Base
    • HDFS
    • MPP数据库选型
    • Questions
  • Distributed System
    • 分布式事务
    • 服务网格
    • BASE理论
    • CAP
    • Etcd
    • Raft协议
    • ZAB协议
  • Go
    • 1.语言基础
      • 1.CPU寄存器
      • 2-1.函数调用
      • 2-2.函数调用栈
      • 2.接口
      • 3.汇编
      • 4.调试
    • 2.编译
      • 1.编译
      • 2.词法与语法分析
      • 3.类型检查
      • 4.中间代码生成
      • 5.机器码生成
    • 3.数据结构
      • 1.数组array
      • 2.切片slice
      • 3.哈希表map
      • 4.字符串
    • 4.常用关键字
      • 1.循环
      • 2.defer
      • 3.panic和recover
      • 4.make和new
    • 5.并发编程
      • 1.上下文Context的实现
      • 2-1.runtime.sema信号量
      • 2-2.sync.Mutex的实现
      • 2-3.sync.WaitGroup
      • 2-4.sync.Once的实现
      • 2-5.sync.Map的实现
      • 2-6.sync.Cond
      • 2-7.sync.Pool的实现
      • 2-8.sync.Semaphore的实现
      • 2-9.sync.ErrGroup
      • 3.定时器Timer的实现
      • 4.Channel的实现
      • 5-1.调度-线程
      • 5-2.调度-MPG
      • 5-3.调度-程序及调度启动
      • 5-4.调度-调度策略
      • 5-5.调度-抢占
      • 6.netpoll实现
      • 7.atomic
    • 6.内存管理
      • 1-1.内存分配基础-TCmalloc
      • 1-2.内存分配
      • 2.垃圾回收
      • 3.栈内存管理
    • 参考
    • 各版本特性
    • 坑
    • Go程序性能优化
    • http.Client
    • net.http路由
    • profile采样的实现
    • Questions
    • time的设计
  • Kafka
    • 高可用
    • 架构
    • 消息队列选型
    • ISR
    • Questions
  • Network
    • ARP
    • DNS
    • DPVS
    • GET和POST
    • HTTP 2
    • HTTP 3
    • HTTPS
    • LVS的转发模式
    • NAT
    • Nginx
    • OSI七层模型
    • Protobuf
    • Questions
    • REST Ful
    • RPC
    • socket缓冲区
    • socket详解
    • TCP滑动窗口
    • TCP连接建立源码
    • TCP连接四元组
    • TCP三次握手
    • TCP数据结构
    • TCP四次挥手
    • TCP拥塞控制
    • TCP重传机制
    • UDP
  • OS
    • 磁盘IO
    • 调度
    • 进程VS线程
    • 零拷贝
    • 内存-虚拟内存
    • 内存分配
    • 用户态VS内核态
    • 中断
    • COW写时复制
    • IO多路复用
    • Questions
  • Redis
    • 安装
    • 参考
    • 高可用-持久化
    • 高可用-主从同步
    • 高可用-Cluster
    • 高可用-Sentinel
    • 缓存一致性
    • 事务
    • 数据结构-SDS
    • 数据结构-Skiplist
    • 数据结构-Ziplist
    • 数据结构
    • 数据类型-Hashtable
    • 数据类型-List
    • 数据类型-Set
    • 数据类型-Zset
    • 数据淘汰机制
    • 通信协议-RESP
    • Questions
    • Redis6.0多线程
    • Redis分布式锁
    • Redis分片
  • System Design
    • 本地缓存
    • 错误处理
    • 大文件处理
    • 点赞收藏关注
    • 短链接生成系统
    • 负载均衡
    • 高并发高可用
    • 规则引擎
    • 集卡活动
    • 秒杀系统
    • 评论系统
    • 熔断
    • 限流
    • 延迟队列
    • Docker
    • ES
    • K 8 S
    • Node.js
    • Questions
  • Work
    • Bash
    • Charles
    • Code Review
    • Ffmpeg
    • Git
    • intellij插件
    • I Term 2
    • Mac
    • mysql命令
    • Nginx
    • postgresql命令
    • Protoc
    • Ssh
    • Systemd
    • Tcp相关命令
    • Vim
Powered by GitBook
On this page
  • Kruskal 克鲁斯卡尔算法
  • Prime 普里姆算法
  1. Algorithm

最小生成树

Minimum Spanning Tree (MST),最小生成树

给你一个有向带权图,需要你删除一些边,使这个图变成一个权值最小的树,这就是图论入门时最经典的最小生成树问题了

将高速公路问题中的城市看做图中的顶点,城市之间修建的道路看做图中顶点之间的边,城市之间所修修建的公路的长度看做是图中个边上的权值。这样我们就把高速公路问题转换成了求一个有向连通网的最小生成树问题。

Kruskal 克鲁斯卡尔算法

所有的顶点放那,每次从所有的边中找一条代价最小的(可以通过排序,或使用最小堆),同时保证加入的边不产生环(可以用并查集)。

  1. 先将边按权重排序

  2. 遍历边,使用并查集尝试将边加入集合。通过并查集,如果没有圈可以成功加入,否则会加入失败

  3. 遍历完所有边后,集合中剩下的就是最小生成树的边

func BuildMST(n int, edges [][]int) int {
    sort(edges)        // 按代价排序。也可以使用最小堆,性能更好
    set := UnionFind{} // 依赖于并查集,保证不产生圈
    set.Init(n)
    res := make([][]int, 0)
    for _, edge := range edges {         // 尝试将每条边加入并查集
        if set.Union(edge[0], edge[1]) { // 如果产生圈,则这两个点会指向同一个根节点,这里会返回false
            res = append(res, edge)      // 没圈就把边放入结果集
        }
    }
    return res
}

Prime 普里姆算法

  1. 将一个图的顶点分为两部分,一部分是最小生成树中的结点(A集合),另一部分是未处理的结点(B集合)。

  2. 首先选择一个结点,将这个结点加入A中,然后对集合B中的顶点遍历,取边权值最小的那个,将此顶点从B中删除,加入集合A中。

  3. 递归重复步骤2,直到B集合中的结点为空,结束此过程。

  4. A集合中的结点就是由Prime算法得到的最小生成树的结点,依照步骤2的结点连接这些顶点,得到的就是这个图的最小生成树

例题

参考

Previous最短路径NextKMP算法

Last updated 2 years ago

1584. Min Cost to Connect All Points
许铁-巡洋舰科技 - 话说最小生成树的prim算法和Kruskal算法的区别?
img