diva-notes
  • README
  • Ads
    • 定价策略
    • 广告层级
    • 归因模型
    • 买量
    • Chat GPT
    • Google
  • AI
    • 参考资料
    • Chat GPT
    • stable-diffusion-webui安装
  • Algorithm
    • 倍增
    • 并查集
    • 参考
    • 环的判断
    • 凸包
    • 蓄水池抽样
    • 最短路径
    • 最小生成树
    • KMP算法
    • Rabin-Karp算法
    • Tarjan桥算法
  • Architecture
    • Serverless
  • Career
  • CICD
    • 代码质量
    • CICD实践
  • Data Structure
    • 布谷鸟过滤器
    • 布隆过滤器
    • 浮点
    • 红黑树
    • 锁
    • LSM树
  • DB
    • My SQL
      • 隔离级别
      • 架构
      • 索引
      • 锁
      • 页结构
      • 主从同步
      • ACID
      • Log
      • MVCC
      • Questions
    • Postgres
      • 持久化
      • 对比MySQL
      • 隔离级别
      • 索引
      • Greenpulm
      • MVCC
    • 倒排索引
    • 列式存储
    • H Base
    • HDFS
    • MPP数据库选型
    • Questions
  • Distributed System
    • 分布式事务
    • 服务网格
    • BASE理论
    • CAP
    • Etcd
    • Raft协议
    • ZAB协议
  • Go
    • 1.语言基础
      • 1.CPU寄存器
      • 2-1.函数调用
      • 2-2.函数调用栈
      • 2.接口
      • 3.汇编
      • 4.调试
    • 2.编译
      • 1.编译
      • 2.词法与语法分析
      • 3.类型检查
      • 4.中间代码生成
      • 5.机器码生成
    • 3.数据结构
      • 1.数组array
      • 2.切片slice
      • 3.哈希表map
      • 4.字符串
    • 4.常用关键字
      • 1.循环
      • 2.defer
      • 3.panic和recover
      • 4.make和new
    • 5.并发编程
      • 1.上下文Context的实现
      • 2-1.runtime.sema信号量
      • 2-2.sync.Mutex的实现
      • 2-3.sync.WaitGroup
      • 2-4.sync.Once的实现
      • 2-5.sync.Map的实现
      • 2-6.sync.Cond
      • 2-7.sync.Pool的实现
      • 2-8.sync.Semaphore的实现
      • 2-9.sync.ErrGroup
      • 3.定时器Timer的实现
      • 4.Channel的实现
      • 5-1.调度-线程
      • 5-2.调度-MPG
      • 5-3.调度-程序及调度启动
      • 5-4.调度-调度策略
      • 5-5.调度-抢占
      • 6.netpoll实现
      • 7.atomic
    • 6.内存管理
      • 1-1.内存分配基础-TCmalloc
      • 1-2.内存分配
      • 2.垃圾回收
      • 3.栈内存管理
    • 参考
    • 各版本特性
    • 坑
    • Go程序性能优化
    • http.Client
    • net.http路由
    • profile采样的实现
    • Questions
    • time的设计
  • Kafka
    • 高可用
    • 架构
    • 消息队列选型
    • ISR
    • Questions
  • Network
    • ARP
    • DNS
    • DPVS
    • GET和POST
    • HTTP 2
    • HTTP 3
    • HTTPS
    • LVS的转发模式
    • NAT
    • Nginx
    • OSI七层模型
    • Protobuf
    • Questions
    • REST Ful
    • RPC
    • socket缓冲区
    • socket详解
    • TCP滑动窗口
    • TCP连接建立源码
    • TCP连接四元组
    • TCP三次握手
    • TCP数据结构
    • TCP四次挥手
    • TCP拥塞控制
    • TCP重传机制
    • UDP
  • OS
    • 磁盘IO
    • 调度
    • 进程VS线程
    • 零拷贝
    • 内存-虚拟内存
    • 内存分配
    • 用户态VS内核态
    • 中断
    • COW写时复制
    • IO多路复用
    • Questions
  • Redis
    • 安装
    • 参考
    • 高可用-持久化
    • 高可用-主从同步
    • 高可用-Cluster
    • 高可用-Sentinel
    • 缓存一致性
    • 事务
    • 数据结构-SDS
    • 数据结构-Skiplist
    • 数据结构-Ziplist
    • 数据结构
    • 数据类型-Hashtable
    • 数据类型-List
    • 数据类型-Set
    • 数据类型-Zset
    • 数据淘汰机制
    • 通信协议-RESP
    • Questions
    • Redis6.0多线程
    • Redis分布式锁
    • Redis分片
  • System Design
    • 本地缓存
    • 错误处理
    • 大文件处理
    • 点赞收藏关注
    • 短链接生成系统
    • 负载均衡
    • 高并发高可用
    • 规则引擎
    • 集卡活动
    • 秒杀系统
    • 评论系统
    • 熔断
    • 限流
    • 延迟队列
    • Docker
    • ES
    • K 8 S
    • Node.js
    • Questions
  • Work
    • Bash
    • Charles
    • Code Review
    • Ffmpeg
    • Git
    • intellij插件
    • I Term 2
    • Mac
    • mysql命令
    • Nginx
    • postgresql命令
    • Protoc
    • Ssh
    • Systemd
    • Tcp相关命令
    • Vim
Powered by GitBook
On this page
  1. Network

HTTP 3

HTTP/2 存在的问题

队头阻塞

TCP传输过程中会把数据拆分为一个个按照顺序排列的数据包,这些数据包通过网络传输到了接收端,接收端再按照顺序将这些数据包组合成原始数据,这样就完成了数据传输。但是如果其中的某一个数据包没有按照顺序到达,接收端会一直保持连接等待数据包返回,这时候就会阻塞后续请求。这就发生了TCP队头阻塞。

HTTP2 是基于 TCP 协议的,因此也存在这个问题

TCP握手时长

TCP 三次握手的过程客户端和服务器之间需要交互三次,那么也就是说需要消耗 1.5 RTT。

另外,如果使用的是安全的 HTTPS 协议,就还需要使用 TLS 协议进行安全数据传输,这个过程又要消耗 1.5 RTT

升级 TCP ?

基于上面我们提到的这些问题,升级 TCP 协议是否可行?

这就涉及到一个 协议僵化 的问题。大部分现有网络上的交换机、路由器、操作系统都不支持直接升级,更换设备的成本巨大。

QUIC协议

Google 2013年开发的基于 UDP 的协议,全称 Quick UDP Internet Connection

有以下特点:

  • 基于 UDP 的传输层协议:它使用 UDP 端口号来识别指定机器上的特定服务器。

  • 可靠性:虽然 UDP 是不可靠传输协议,但是 QUIC 在 UDP 的基础上做了些改造,使得他提供了和 TCP 类似的可靠性。它提供了数据包重传、拥塞控制、调整传输节奏以及其他一些 TCP 中存在的特性。

  • 实现了无序、并发字节流:QUIC 的单个数据流可以保证有序交付,但多个数据流之间可能乱序

  • 快速握手:QUIC 提供 0-RTT 和 1-RTT 的连接建立,比三次握手快

    • 首次建立连接时实际上就是三次握手,只是在第三次握手时直接带上了数据,耗时 1-RTT

    • 后续建立连接时会直接使用缓存的密钥,密钥未过期时,直接发送数据即可,耗时 0-RTT

  • 使用 TLS 1.3 传输层安全协议:降低 TLS 握手延迟至 1RTT

缺点

一样存在 协议僵化 的问题。因为 UDP 一直以来的定位都是不可靠连接,很多中间设备对 UDP 的支持程度并不高,有的甚至会过滤一些端口的 UDP 包,导致丢包

参考

PreviousHTTP 2NextHTTPS

Last updated 2 years ago

Hollis - Google、Facebook等均开始支持的HTTP3到底是个什么鬼