diva-notes
  • README
  • Ads
    • 定价策略
    • 广告层级
    • 归因模型
    • 买量
    • Chat GPT
    • Google
  • AI
    • 参考资料
    • Chat GPT
    • stable-diffusion-webui安装
  • Algorithm
    • 倍增
    • 并查集
    • 参考
    • 环的判断
    • 凸包
    • 蓄水池抽样
    • 最短路径
    • 最小生成树
    • KMP算法
    • Rabin-Karp算法
    • Tarjan桥算法
  • Architecture
    • Serverless
  • Career
  • CICD
    • 代码质量
    • CICD实践
  • Data Structure
    • 布谷鸟过滤器
    • 布隆过滤器
    • 浮点
    • 红黑树
    • 锁
    • LSM树
  • DB
    • My SQL
      • 隔离级别
      • 架构
      • 索引
      • 锁
      • 页结构
      • 主从同步
      • ACID
      • Log
      • MVCC
      • Questions
    • Postgres
      • 持久化
      • 对比MySQL
      • 隔离级别
      • 索引
      • Greenpulm
      • MVCC
    • 倒排索引
    • 列式存储
    • H Base
    • HDFS
    • MPP数据库选型
    • Questions
  • Distributed System
    • 分布式事务
    • 服务网格
    • BASE理论
    • CAP
    • Etcd
    • Raft协议
    • ZAB协议
  • Go
    • 1.语言基础
      • 1.CPU寄存器
      • 2-1.函数调用
      • 2-2.函数调用栈
      • 2.接口
      • 3.汇编
      • 4.调试
    • 2.编译
      • 1.编译
      • 2.词法与语法分析
      • 3.类型检查
      • 4.中间代码生成
      • 5.机器码生成
    • 3.数据结构
      • 1.数组array
      • 2.切片slice
      • 3.哈希表map
      • 4.字符串
    • 4.常用关键字
      • 1.循环
      • 2.defer
      • 3.panic和recover
      • 4.make和new
    • 5.并发编程
      • 1.上下文Context的实现
      • 2-1.runtime.sema信号量
      • 2-2.sync.Mutex的实现
      • 2-3.sync.WaitGroup
      • 2-4.sync.Once的实现
      • 2-5.sync.Map的实现
      • 2-6.sync.Cond
      • 2-7.sync.Pool的实现
      • 2-8.sync.Semaphore的实现
      • 2-9.sync.ErrGroup
      • 3.定时器Timer的实现
      • 4.Channel的实现
      • 5-1.调度-线程
      • 5-2.调度-MPG
      • 5-3.调度-程序及调度启动
      • 5-4.调度-调度策略
      • 5-5.调度-抢占
      • 6.netpoll实现
      • 7.atomic
    • 6.内存管理
      • 1-1.内存分配基础-TCmalloc
      • 1-2.内存分配
      • 2.垃圾回收
      • 3.栈内存管理
    • 参考
    • 各版本特性
    • 坑
    • Go程序性能优化
    • http.Client
    • net.http路由
    • profile采样的实现
    • Questions
    • time的设计
  • Kafka
    • 高可用
    • 架构
    • 消息队列选型
    • ISR
    • Questions
  • Network
    • ARP
    • DNS
    • DPVS
    • GET和POST
    • HTTP 2
    • HTTP 3
    • HTTPS
    • LVS的转发模式
    • NAT
    • Nginx
    • OSI七层模型
    • Protobuf
    • Questions
    • REST Ful
    • RPC
    • socket缓冲区
    • socket详解
    • TCP滑动窗口
    • TCP连接建立源码
    • TCP连接四元组
    • TCP三次握手
    • TCP数据结构
    • TCP四次挥手
    • TCP拥塞控制
    • TCP重传机制
    • UDP
  • OS
    • 磁盘IO
    • 调度
    • 进程VS线程
    • 零拷贝
    • 内存-虚拟内存
    • 内存分配
    • 用户态VS内核态
    • 中断
    • COW写时复制
    • IO多路复用
    • Questions
  • Redis
    • 安装
    • 参考
    • 高可用-持久化
    • 高可用-主从同步
    • 高可用-Cluster
    • 高可用-Sentinel
    • 缓存一致性
    • 事务
    • 数据结构-SDS
    • 数据结构-Skiplist
    • 数据结构-Ziplist
    • 数据结构
    • 数据类型-Hashtable
    • 数据类型-List
    • 数据类型-Set
    • 数据类型-Zset
    • 数据淘汰机制
    • 通信协议-RESP
    • Questions
    • Redis6.0多线程
    • Redis分布式锁
    • Redis分片
  • System Design
    • 本地缓存
    • 错误处理
    • 大文件处理
    • 点赞收藏关注
    • 短链接生成系统
    • 负载均衡
    • 高并发高可用
    • 规则引擎
    • 集卡活动
    • 秒杀系统
    • 评论系统
    • 熔断
    • 限流
    • 延迟队列
    • Docker
    • ES
    • K 8 S
    • Node.js
    • Questions
  • Work
    • Bash
    • Charles
    • Code Review
    • Ffmpeg
    • Git
    • intellij插件
    • I Term 2
    • Mac
    • mysql命令
    • Nginx
    • postgresql命令
    • Protoc
    • Ssh
    • Systemd
    • Tcp相关命令
    • Vim
Powered by GitBook
On this page
  • Linux 下的 COW
  • Redis 的 COW
  • 文件系统的COW
  1. OS

COW写时复制

Linux 下的 COW

linux 下的 fork() 函数会产生一个和父进程完全相同的子进程 (除了pid)

按照传统的做法,会直接将父进程的数据(内存)拷贝到子进程中,拷贝完之后,父进程和子进程之间的数据段和堆栈是相互独立的。

这也是进程和线程的区别之一,线程共享内存,而进程内存独立。

但很多时候复制给子进程的数据是用不着的,浪费性能和时间。

于是就有了 Copy On Write 这项技术,原理也很简单:

  • fork 创建出的子进程,与父进程共享内存空间。子进程的地址空间指向父进程。但对这些内存空间只有读权限。

  • 子进程写内存时,CPU硬件检测到内存页是只读的,于是触发页异常中断(page-fault),陷入 kernel 的一个中断例程。中断例程中,kernel 就会把触发的异常的页复制一份,于是父子进程各自持有独立的一份。

好处

  • 减少分配和复制大量资源时带来的瞬间延时。

  • 减少不必要的资源分配。比如 fork 进程时,并不是所有的页面都需要复制,父进程的代码段和只读数据段都不被允许修改,所以无需复制。

缺点

  • 如果在 fork() 之后,父子进程都还需要继续进行写操作,那么会产生大量的分页错误 (页异常中断page-fault),这样就得不偿失。

Redis 的 COW

Redis 在执行 RDB 持久化时,如果是采用 BGSAVE/ BGREWRITEAOF 的方式,那 Redis 会 fork 出一个子进程来读取数据,这个子进程采用的便是 COW ,子进程的地址空间指向父进程,这样就可以间接读到父进程数据。而不是复制一份数据到内存里,再持久化这份复制的数据。

文件系统的COW

对数据进行修改的时候,不会直接在原来的数据位置上进行操作,而是重新找个位置修改。这样的好处是一旦系统突然断电,重启之后不需要做 Fsck (file system check)。好处就是能保证数据的完整性,掉电的话容易恢复。

比如说:要修改数据块A的内容,先把A读出来,写到B块里面去。如果这时候断电了,原来A的内容是还在的。

Previous中断NextIO多路复用

Last updated 2 years ago