diva-notes
  • README
  • Ads
    • 定价策略
    • 广告层级
    • 归因模型
    • 买量
    • Chat GPT
    • Google
  • AI
    • 参考资料
    • Chat GPT
    • stable-diffusion-webui安装
  • Algorithm
    • 倍增
    • 并查集
    • 参考
    • 环的判断
    • 凸包
    • 蓄水池抽样
    • 最短路径
    • 最小生成树
    • KMP算法
    • Rabin-Karp算法
    • Tarjan桥算法
  • Architecture
    • Serverless
  • Career
  • CICD
    • 代码质量
    • CICD实践
  • Data Structure
    • 布谷鸟过滤器
    • 布隆过滤器
    • 浮点
    • 红黑树
    • 锁
    • LSM树
  • DB
    • My SQL
      • 隔离级别
      • 架构
      • 索引
      • 锁
      • 页结构
      • 主从同步
      • ACID
      • Log
      • MVCC
      • Questions
    • Postgres
      • 持久化
      • 对比MySQL
      • 隔离级别
      • 索引
      • Greenpulm
      • MVCC
    • 倒排索引
    • 列式存储
    • H Base
    • HDFS
    • MPP数据库选型
    • Questions
  • Distributed System
    • 分布式事务
    • 服务网格
    • BASE理论
    • CAP
    • Etcd
    • Raft协议
    • ZAB协议
  • Go
    • 1.语言基础
      • 1.CPU寄存器
      • 2-1.函数调用
      • 2-2.函数调用栈
      • 2.接口
      • 3.汇编
      • 4.调试
    • 2.编译
      • 1.编译
      • 2.词法与语法分析
      • 3.类型检查
      • 4.中间代码生成
      • 5.机器码生成
    • 3.数据结构
      • 1.数组array
      • 2.切片slice
      • 3.哈希表map
      • 4.字符串
    • 4.常用关键字
      • 1.循环
      • 2.defer
      • 3.panic和recover
      • 4.make和new
    • 5.并发编程
      • 1.上下文Context的实现
      • 2-1.runtime.sema信号量
      • 2-2.sync.Mutex的实现
      • 2-3.sync.WaitGroup
      • 2-4.sync.Once的实现
      • 2-5.sync.Map的实现
      • 2-6.sync.Cond
      • 2-7.sync.Pool的实现
      • 2-8.sync.Semaphore的实现
      • 2-9.sync.ErrGroup
      • 3.定时器Timer的实现
      • 4.Channel的实现
      • 5-1.调度-线程
      • 5-2.调度-MPG
      • 5-3.调度-程序及调度启动
      • 5-4.调度-调度策略
      • 5-5.调度-抢占
      • 6.netpoll实现
      • 7.atomic
    • 6.内存管理
      • 1-1.内存分配基础-TCmalloc
      • 1-2.内存分配
      • 2.垃圾回收
      • 3.栈内存管理
    • 参考
    • 各版本特性
    • 坑
    • Go程序性能优化
    • http.Client
    • net.http路由
    • profile采样的实现
    • Questions
    • time的设计
  • Kafka
    • 高可用
    • 架构
    • 消息队列选型
    • ISR
    • Questions
  • Network
    • ARP
    • DNS
    • DPVS
    • GET和POST
    • HTTP 2
    • HTTP 3
    • HTTPS
    • LVS的转发模式
    • NAT
    • Nginx
    • OSI七层模型
    • Protobuf
    • Questions
    • REST Ful
    • RPC
    • socket缓冲区
    • socket详解
    • TCP滑动窗口
    • TCP连接建立源码
    • TCP连接四元组
    • TCP三次握手
    • TCP数据结构
    • TCP四次挥手
    • TCP拥塞控制
    • TCP重传机制
    • UDP
  • OS
    • 磁盘IO
    • 调度
    • 进程VS线程
    • 零拷贝
    • 内存-虚拟内存
    • 内存分配
    • 用户态VS内核态
    • 中断
    • COW写时复制
    • IO多路复用
    • Questions
  • Redis
    • 安装
    • 参考
    • 高可用-持久化
    • 高可用-主从同步
    • 高可用-Cluster
    • 高可用-Sentinel
    • 缓存一致性
    • 事务
    • 数据结构-SDS
    • 数据结构-Skiplist
    • 数据结构-Ziplist
    • 数据结构
    • 数据类型-Hashtable
    • 数据类型-List
    • 数据类型-Set
    • 数据类型-Zset
    • 数据淘汰机制
    • 通信协议-RESP
    • Questions
    • Redis6.0多线程
    • Redis分布式锁
    • Redis分片
  • System Design
    • 本地缓存
    • 错误处理
    • 大文件处理
    • 点赞收藏关注
    • 短链接生成系统
    • 负载均衡
    • 高并发高可用
    • 规则引擎
    • 集卡活动
    • 秒杀系统
    • 评论系统
    • 熔断
    • 限流
    • 延迟队列
    • Docker
    • ES
    • K 8 S
    • Node.js
    • Questions
  • Work
    • Bash
    • Charles
    • Code Review
    • Ffmpeg
    • Git
    • intellij插件
    • I Term 2
    • Mac
    • mysql命令
    • Nginx
    • postgresql命令
    • Protoc
    • Ssh
    • Systemd
    • Tcp相关命令
    • Vim
Powered by GitBook
On this page
  • make
  • new
  • 小结
  • 原文链接
  1. Go
  2. 4.常用关键字

4.make和new

Previous3.panic和recoverNext5.并发编程

Last updated 2 years ago

当我们想要在 Go 语言中初始化一个结构时,可能会用到两个不同的关键字 make 和 new。因为它们的功能相似,所以初学者可能会对这两个关键字的作用感到困惑,但是它们两者能够初始化的变量却有较大的不同。

  • make 的作用是初始化内置的数据结构,也就是我们在前面提到的切片、哈希表和 Channel;

  • new 的作用是根据传入的类型分配一片内存空间并返回指向这片内存空间的指针;

slice := make([]int, 0, 100)
hash := make(map[int]bool, 10)
ch := make(chan int, 5)
  1. slice 是一个包含 data、cap 和 len 的结构体 ;

  2. hash 是一个指向 结构体的指针;

  3. ch 是一个指向 结构体的指针;

相比与复杂的 make 关键字,new 的功能就简单多了,它只能接收类型作为参数然后返回一个指向该类型的指针:

i := new(int)

var v int
i := &v

上述代码片段中的两种不同初始化方法是等价的,它们都会创建一个指向 int 零值的指针。

make

在编译期间的类型检查阶段,Go 语言会将代表 make 关键字的 OMAKE 节点根据参数类型的不同转换成了 OMAKESLICE、OMAKEMAP 和 OMAKECHAN 三种不同类型的节点,这些节点会调用不同的运行时函数来初始化相应的数据结构。

new

编译器会在中间代码生成阶段通过以下两个函数处理该关键字:

  1. cmd/compile/internal/gc.state.expr 会根据申请空间的大小分两种情况处理:

    1. 如果申请的空间为 0,就会返回一个表示空指针的 zerobase 变量;

func callnew(t *types.Type) *Node {
	...
	n := nod(ONEWOBJ, typename(t), nil)
	...
	return n
}

func (s *state) expr(n *Node) *ssa.Value {
	switch n.Op {
	case ONEWOBJ:
		if n.Type.Elem().Size() == 0 {
			return s.newValue1A(ssa.OpAddr, n.Type, zerobaseSym, s.sb)
		}
		typ := s.expr(n.Left)
		vv := s.rtcall(newobject, true, []*types.Type{n.Type}, typ) // 调用 newobject 函数
		return vv[0]
	}
}

无论是直接使用 new,还是使用 var 初始化变量,它们在编译器看来都是 ONEW 和 ODCL 节点。

  • 如果变量不需要在当前作用域外生存,例如不用作为返回值返回给调用方,那么就不需要初始化在堆上。

func newobject(typ *_type) unsafe.Pointer {
	return mallocgc(typ.size, typ, true)
}

小结

这里我们简单总结一下 Go 语言中 make 和 new 关键字的实现原理,make 关键字的作用是创建切片、哈希表和 Channel 等内置的数据结构,并初始化数据结构内置字段;而 new 的作用是为类型申请一片内存空间,并返回指向这片内存的指针。

原文链接

https://draveness.me/golang/docs/part2-foundation/ch05-keyword/golang-make-and-new/

会将关键字转换成 ONEWOBJ 类型的节点;

在遇到其他情况时会将关键字转换成 函数:

如果变量会逃逸到堆上,这些节点在这一阶段都会被 转换成通过 函数并在堆上申请内存;

函数会获取传入类型占用空间的大小,调用 在堆上申请一片内存空间并返回指向这片内存空间的指针:

函数的实现大概有 200 多行代码,我们会在后面的章节中详细分析 Go 语言的内存管理机制。

reflect.SliceHeader
runtime.hmap
runtime.hchan
cmd/compile/internal/gc.callnew
runtime.newobject
cmd/compile/internal/gc.walkstmt
runtime.newobject
runtime.newobject
runtime.mallocgc
runtime.mallocgc