diva-notes
  • README
  • Ads
    • 定价策略
    • 广告层级
    • 归因模型
    • 买量
    • Chat GPT
    • Google
  • AI
    • 参考资料
    • Chat GPT
    • stable-diffusion-webui安装
  • Algorithm
    • 倍增
    • 并查集
    • 参考
    • 环的判断
    • 凸包
    • 蓄水池抽样
    • 最短路径
    • 最小生成树
    • KMP算法
    • Rabin-Karp算法
    • Tarjan桥算法
  • Architecture
    • Serverless
  • Career
  • CICD
    • 代码质量
    • CICD实践
  • Data Structure
    • 布谷鸟过滤器
    • 布隆过滤器
    • 浮点
    • 红黑树
    • 锁
    • LSM树
  • DB
    • My SQL
      • 隔离级别
      • 架构
      • 索引
      • 锁
      • 页结构
      • 主从同步
      • ACID
      • Log
      • MVCC
      • Questions
    • Postgres
      • 持久化
      • 对比MySQL
      • 隔离级别
      • 索引
      • Greenpulm
      • MVCC
    • 倒排索引
    • 列式存储
    • H Base
    • HDFS
    • MPP数据库选型
    • Questions
  • Distributed System
    • 分布式事务
    • 服务网格
    • BASE理论
    • CAP
    • Etcd
    • Raft协议
    • ZAB协议
  • Go
    • 1.语言基础
      • 1.CPU寄存器
      • 2-1.函数调用
      • 2-2.函数调用栈
      • 2.接口
      • 3.汇编
      • 4.调试
    • 2.编译
      • 1.编译
      • 2.词法与语法分析
      • 3.类型检查
      • 4.中间代码生成
      • 5.机器码生成
    • 3.数据结构
      • 1.数组array
      • 2.切片slice
      • 3.哈希表map
      • 4.字符串
    • 4.常用关键字
      • 1.循环
      • 2.defer
      • 3.panic和recover
      • 4.make和new
    • 5.并发编程
      • 1.上下文Context的实现
      • 2-1.runtime.sema信号量
      • 2-2.sync.Mutex的实现
      • 2-3.sync.WaitGroup
      • 2-4.sync.Once的实现
      • 2-5.sync.Map的实现
      • 2-6.sync.Cond
      • 2-7.sync.Pool的实现
      • 2-8.sync.Semaphore的实现
      • 2-9.sync.ErrGroup
      • 3.定时器Timer的实现
      • 4.Channel的实现
      • 5-1.调度-线程
      • 5-2.调度-MPG
      • 5-3.调度-程序及调度启动
      • 5-4.调度-调度策略
      • 5-5.调度-抢占
      • 6.netpoll实现
      • 7.atomic
    • 6.内存管理
      • 1-1.内存分配基础-TCmalloc
      • 1-2.内存分配
      • 2.垃圾回收
      • 3.栈内存管理
    • 参考
    • 各版本特性
    • 坑
    • Go程序性能优化
    • http.Client
    • net.http路由
    • profile采样的实现
    • Questions
    • time的设计
  • Kafka
    • 高可用
    • 架构
    • 消息队列选型
    • ISR
    • Questions
  • Network
    • ARP
    • DNS
    • DPVS
    • GET和POST
    • HTTP 2
    • HTTP 3
    • HTTPS
    • LVS的转发模式
    • NAT
    • Nginx
    • OSI七层模型
    • Protobuf
    • Questions
    • REST Ful
    • RPC
    • socket缓冲区
    • socket详解
    • TCP滑动窗口
    • TCP连接建立源码
    • TCP连接四元组
    • TCP三次握手
    • TCP数据结构
    • TCP四次挥手
    • TCP拥塞控制
    • TCP重传机制
    • UDP
  • OS
    • 磁盘IO
    • 调度
    • 进程VS线程
    • 零拷贝
    • 内存-虚拟内存
    • 内存分配
    • 用户态VS内核态
    • 中断
    • COW写时复制
    • IO多路复用
    • Questions
  • Redis
    • 安装
    • 参考
    • 高可用-持久化
    • 高可用-主从同步
    • 高可用-Cluster
    • 高可用-Sentinel
    • 缓存一致性
    • 事务
    • 数据结构-SDS
    • 数据结构-Skiplist
    • 数据结构-Ziplist
    • 数据结构
    • 数据类型-Hashtable
    • 数据类型-List
    • 数据类型-Set
    • 数据类型-Zset
    • 数据淘汰机制
    • 通信协议-RESP
    • Questions
    • Redis6.0多线程
    • Redis分布式锁
    • Redis分片
  • System Design
    • 本地缓存
    • 错误处理
    • 大文件处理
    • 点赞收藏关注
    • 短链接生成系统
    • 负载均衡
    • 高并发高可用
    • 规则引擎
    • 集卡活动
    • 秒杀系统
    • 评论系统
    • 熔断
    • 限流
    • 延迟队列
    • Docker
    • ES
    • K 8 S
    • Node.js
    • Questions
  • Work
    • Bash
    • Charles
    • Code Review
    • Ffmpeg
    • Git
    • intellij插件
    • I Term 2
    • Mac
    • mysql命令
    • Nginx
    • postgresql命令
    • Protoc
    • Ssh
    • Systemd
    • Tcp相关命令
    • Vim
Powered by GitBook
On this page
  • 内核态 VS 用户态
  • 标准库
  • 参考
  1. OS

用户态VS内核态

Previous内存分配Next中断

Last updated 2 years ago

内核态 VS 用户态

x86 CPU提供了4种工作状态:0, 1, 2, 3,数字越小表示CPU的特权约大,0号下CPU特权最大,可以执行任何指令。

通过这种设计来保证安全性。一般情况下系统只使用0和3,即 用户态(3) 以及 内核态(0)。

内核态 Kernel Mode

CPU执行操作系统代码时就处于内核态,在内核态下CPU可以执行任何机器指令、访问所有地址空间、不受限制的访问任何硬件。

用户态 User Mode

CPU执行我们写的程序时就处于用户态。在用户态我们的代码处处受限,不能直接访问硬件、不能访问特定地址空间(比如,尝试写一块属于操作系统的内存),或以错误的类型访问内存区域(比如,尝试写一块只读内存),否则操作系统直接将你 kill 掉,这就是著名的Segmentation fault、不能执行特权指令,等等。

系统调用 System Call

普通程序永远也去不了内核态,只能以通信的方式从用户态往内核态传递信息。操作系统为普通程序员留了一些特定的 函数(接口),如 read(), write(), open(), socket() 等函数,通过调用这些函数就能向操作系统请求服务了,这些函数被称为系统调用 System Call。通过系统调用我们可以让操作系统代替我们完成一些事情,像打开文件、网络通信等等。调用时便称为 陷入内核态

你可能有些疑惑,什么,还有系统调用这种东西,为什么我没调用过也可以打开文件、进行网络通信?

标准库

虽然我们可以通过系统让操作系统替我们完成一些特定任务,但这些系统调用都是和操作系统强相关的,Linux和Windows的系统调用就完全不同。

如果你直接使用系统调用的话,那么Linux版本的程序就没有办法在Windows上运行,因此我们需要某种标准,该标准对程序员屏蔽底层差异,这样程序员写的程序就无需修改的在不同操作系统上运行了。

在语言中,这就是所谓的标准库。比如 go 的 runtime 包,里面对不同系统的 syscall 类函数进行了封装

注意,标准库代码也是运行在用户态的,一般来说,我们调用标准库去打开文件、网络通信等等,标准库再根据操作系统选择对应的系统调用。

从分层的角度看,我们的程序一般都是这样的汉堡包类型:

最上层是应用程序,应用程序一般只和标准库打交道 (当然,我们也可以绕过标准库),标准库通过系统调用和操作系统交互,操作系统管理底层硬件。

这就是为什么在C语言同样的 open 函数既能在Linux下打开文件也能在Windows下打开文件的原因。

参考

码农的荒岛求生 - 申请内存时底层发生了什么?
v2-35d4d0a5f59ff19ec0c8f37c28ca8bbe_1440w
v2-cf33186930d39e64b7647e964f00b9ef_1440w